HTTPS(全称:HyperText Transfer Protocol over Secure Socket Layer),其实 HTTPS 并不是一个新鲜协议,Google 很早就开始启用了,初衷是为了保证数据安全。 近两年,Google、Baidu、Facebook 等这样的互联网巨头,不谋而合地开始大力推行 HTTPS, 国内外的大型互联网公司很多也都已经启用了全站 HTTPS,这也是未来互联网发展的趋势。

为鼓励全球网站的 HTTPS 实现,一些互联网公司都提出了自己的要求:

  1. oogle 已调整搜索引擎算法,让采用 HTTPS 的网站在搜索中排名更靠前;
  2. 从 2017 年开始,Chrome 浏览器已把采用 HTTP 协议的网站标记为不安全网站;
  3. 苹果要求 2017 年 App Store 中的所有应用都必须使用 HTTPS 加密连接;
  4. 当前国内炒的很火热的微信小程序也要求必须使用 HTTPS 协议;
  5. 新一代的 HTTP/2 协议的支持需以 HTTPS 为基础。

等等,因此想必在不久的将来,全网 HTTPS 势在必行。

概念

协议

HTTP 协议(HyperText Transfer Protocol,超文本传输协议):是客户端浏览器或其他程序与Web服务器之间的应用层通信协议 。

HTTPS 协议(HyperText Transfer Protocol over Secure Socket Layer):可以理解为 HTTP+SSL/TLS, 即 HTTP 下加入 SSL 层,HTTPS 的安全基础是 SSL,因此加密的详细内容就需要 SSL,用于安全的 HTTP 数据传输。

如上图所示 HTTPS 相比 HTTP 多了一层 SSL/TLS

SSL(Secure Socket Layer,安全套接字层):1994年为 Netscape 所研发,SSL 协议位于 TCP/IP 协议与各种应用层协议之间,为数据通讯提供安全支持。

TLS(Transport Layer Security,传输层安全):其前身是 SSL,它最初的几个版本(SSL 1.0、SSL 2.0、SSL 3.0)由网景公司开发,1999 年从 3.1 开始被 IETF 标准化并改名,发展至今已经有 TLS 1.0、TLS 1.1、TLS 1.2 三个版本。SSL3.0 和 TLS1.0 由于存在安全漏洞,已经很少被使用到。TLS 1.3 改动会比较大,目前还在草案阶段,目前使用最广泛的是 TLS 1.1、TLS 1.2。

加密算法:

据记载,公元前 400 年,古希腊人就发明了置换密码;在第二次世界大战期间,德国军方启用了“恩尼格玛”密码机,所以密码学在社会发展中有着广泛的用途。

  1. 对称加密

    有流式、分组两种,加密和解密都是使用的同一个密钥。

    例如:DES、AES-GCM、ChaCha20-Poly1305 等

  2. 非对称加密

    加密使用的密钥和解密使用的密钥是不相同的,分别称为:公钥、私钥,公钥和算法都是公开的,私钥是保密的。非对称加密算法性能较低,但是安全性超强,由于其加密特性,非对称加密算法能加密的数据长度也是有限的。

    例如:RSA、DSA、ECDSA、 DH、ECDHE

  3. 哈希算法

    将任意长度的信息转换为较短的固定长度的值,通常其长度要比信息小得多,且算法不可逆。

    例如:MD5、SHA-1、SHA-2、SHA-256 等

  4. 数字签名

    签名就是在信息的后面再加上一段内容(信息经过 hash 后的值),可以证明信息没有被修改过。hash 值一般都会加密后(也就是签名)再和信息一起发送,以保证这个 hash 值不被修改。

详解

HTTP 访问过程

抓包如下:

如上图所示,HTTP 请求过程中,客户端与服务器之间没有任何身份确认的过程,数据全部明文传输,“裸奔”在互联网上,所以很容易遭到黑客的攻击,如下:

可以看到,客户端发出的请求很容易被黑客截获,如果此时黑客冒充服务器,则其可返回任意信息给客户端,而不被客户端察觉,所以我们经常会听到一词“劫持”,现象如下:

下面两图中,浏览器中填入的是相同的URL,左边是正确响应,而右边则是被劫持后的响应

所以 HTTP 传输面临的风险有:

  1. 窃听风险:黑客可以获知通信内容。
  2. 篡改风险:黑客可以修改通信内容。
  3. 冒充风险:黑客可以冒充他人身份参与通信。

HTTP 向 HTTPS 演化的过程

第一步:为了防止上述现象的发生,人们想到一个办法:对传输的信息加密(即使黑客截获,也无法破解)

如上图所示,此种方式属于对称加密,双方拥有相同的密钥,信息得到安全传输,但此种方式的缺点是:

(1)不同的客户端、服务器数量庞大,所以双方都需要维护大量的密钥,维护成本很高

(2)因每个客户端、服务器的安全级别不同,密钥极易泄露

第二步:既然使用对称加密时,密钥维护这么繁琐,那我们就用非对称加密试试

如上图所示,客户端用公钥对请求内容加密,服务器使用私钥对内容解密,反之亦然,但上述过程也存在缺点:公钥是公开的(也就是黑客也会有公钥),所以第 ④ 步私钥加密的信息,如果被黑客截获,其可以使用公钥进行解密,获取其中的内容。

第三步:非对称加密既然也有缺陷,那我们就将对称加密,非对称加密两者结合起来,取其精华、去其糟粕,发挥两者的各自的优势

如上图所示

  1. 第 ③ 步时,客户端说:(咱们后续回话采用对称加密吧,这是对称加密的算法和对称密钥)这段话用公钥进行加密,然后传给服务器
  2. 服务器收到信息后,用私钥解密,提取出对称加密算法和对称密钥后,服务器说:(好的)对称密钥加密
  3. 后续两者之间信息的传输就可以使用对称加密的方式了

遇到的问题:

  1. 客户端如何获得公钥
  2. 如何确认服务器是真实的而不是黑客

第四步:获取公钥与确认服务器身份

  1. 获取公钥

    • 提供一个下载公钥的地址,回话前让客户端去下载。(缺点:下载地址有可能是假的;客户端每次在回话前都先去下载公钥也很麻烦)
    • 回话开始时,服务器把公钥发给客户端(缺点:黑客冒充服务器,发送给客户端假的公钥)
  2. 那有木有一种方式既可以安全的获取公钥,又能防止黑客冒充呢? 那就需要用到终极武器了:SSL 证书(申购

    如上图所示,在第 ② 步时服务器发送了一个 SSL 证书给客户端,SSL 证书中包含的具体内容有:

    • 证书的发布机构 CA
    • 证书的有效期
    • 公钥
    • 证书所有者
    • 签名
    • ………
  3. 客户端在接受到服务端发来的 SSL 证书时,会对证书的真伪进行校验,以浏览器为例说明如下:

    • 首先浏览器读取证书中的证书所有者、有效期等信息进行一一校验
    • 浏览器开始查找操作系统中已内置的受信任的证书发布机构 CA,与服务器发来的证书中的颁发者 CA 比对,用于校验证书是否为合法机构颁发
    • 如果找不到,浏览器就会报错,说明服务器发来的证书是不可信任的。
    • 如果找到,那么浏览器就会从操作系统中取出 颁发者 CA 的公钥,然后对服务器发来的证书里面的签名进行解密
    • 浏览器使用相同的 hash 算法计算出服务器发来的证书的 hash 值,将这个计算的 hash 值与证书中签名做对比
    • 对比结果一致,则证明服务器发来的证书合法,没有被冒充
    • 此时浏览器就可以读取证书中的公钥,用于后续加密了
  4. 所以通过发送 SSL 证书的形式,既解决了公钥获取问题,又解决了黑客冒充问题,一箭双雕,HTTPS 加密过程也就此形成

所以相比 HTTP,HTTPS 传输更加安全

- 所有信息都是加密传播,黑客无法窃听。
- 具有校验机制,一旦被篡改,通信双方会立刻发现。
- 配备身份证书,防止身份被冒充。

总结

综上所述,相比 HTTP 协议,HTTPS 协议增加了很多握手、加密解密等流程,虽然过程很复杂,但其可以保证数据传输的安全。所以在这个互联网膨胀的时代,其中隐藏着各种看不见的危机,为了保证数据的安全,维护网络稳定,建议大家多多推广 HTTPS。

HTTPS 访问所面临的问题:

  • SSL 证书费用很高,以及其在服务器上的部署、更新维护非常繁琐
  • HTTPS 降低用户访问速度(多次握手)
  • 网站改用 HTTPS 以后,由HTTP 跳转到 HTTPS 的方式增加了用户访问耗时(多数网站采用 301、302 跳转)
  • HTTPS 涉及到的安全算法会消耗 CPU 资源,需要增加大量机器(https 访问过程需要加解密)

Tutorial